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The Grammar of Science

The Grammar of Science is a book written by Karl 

Pearson and was first published in 1892.1 It is the 

book that was read and had impact on young Albert 

Einstein in creating many greatest scientific theories. 

In the first chapter, Pearson wrote about definitions 

of science while explaining about requirements and 

inquiries to be scientific in nature. I like one of the 

Pearson’s definitions regarding distinctive features of 

scientific method - discovery of scientific laws by aid 

of the “creative imagination” and “self-criticism”.1 

Later on, Pearson had a classic quote “Statistics is 

the grammar of science.” What does he mean by the 

word “Grammar”? I opened up an online Oxford 

dictionary and one of the definitions of “grammar” is 

“the basic elements of an area of knowledge or skill”2. 

Thus, this has become the name of this column.  

We will take a look at basic elements in doing 

research         covering         research        methodology,  

epidemiology and statistics. There are times that we 

take it for grant, thinking that we know this and that, 

and then explain it the way that we think it is or 

should be. But we sometimes forget the origin or even 

the true definition or meaning of the terms that we 

use. Several authors will take turn writing up in this 

column with the expectation to reflect “back to basics” 

of what have been commonly used among researchers. 
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Are you confident to say so? 

I would like to start the column with the concept of 

“confidence” in statistics. I just bought a new book, “A 

Field Guide to Lies and Statistics”1 and enjoyed 

reading it a lot. The author started his chapter one 

that – because it is about numbers so statistics seems 

to represent hard facts given to us by nature. But - is 

it so? The argument is that – it is people who decide 

what to count, how to go about counting, how to group 

or analyze the numbers, and how to describe, present 

and interpret them. So statistics are not facts – they 

are interpretations! I agree with the author. Back to 

my first question – how do you interpret the numbers 

that you see in your study results? In the other word 

– how confident you are to claim that numbers are 

the facts in nature?     

First of all - Back to  basics 

When we conduct a research, we do not have to collect 

data from the entire “population”. We simply collect 

data from “samples” with expectation that they are 

good representatives of our population of interest and 

we have enough sample size to estimate the value 

that could be in that population. We hope that we can 

generalize or infer the value from samples, so-called 

“statistics”, to the value in the population, so-called 

“parameter”. That is why the statistics that we 

learned is called “Inferential Statistics”. (Additional 

note: We usually use Greek symbol for “parameter” 

like μ σ ρ π to represent value that we never know 

(because we hardly or never collect data from the 

whole population) and we use English symbol 

for ”statistics” like μ ς ρ π to represent the value that 

we know (because it comes from the samples that we 

collect by ourselves)2-5. 

What is “parameter estimation”?  

When the researchers want to estimate the value in 

population from the value that they get from the 
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samples, this is called “parameter estimation”. For 

example, researchers want to estimate the mean 

score of quality of life among the patients with cancer 

stage 3 (μ), they do not have to collect data from all 

cancer stage 3 patients in the whole world or from all 

patients in the hospital, but simply collect data from 

the random or representative samples of the patients 

at that stage and get the sample statistics as (X ̅ and 

SD). Then they can estimate μ from that X ̅ and SD. 

What we usually see as the estimate of the parameter 

is not only a single value, so-called “point estimate” 

but also the “interval estimate”, also-called the 

“confidence intervals” (CI) around the value2-5. For 

example, say when analyzing an estimate of mean 

score for quality of life in a sample of 100 patients 

with cancer stage 3 we produce a mean result of 30 

and SD of 5. From these statistics we can calculate a 

95% confidence interval of +/- 1.96 (SE) for the 

population mean estimate. Our point estimate is 30 

and interval estimates presenting as confidence 

interval is (30-1.96x0.5) to (30+1.96x0.5), or we can 

say that the confidence interval is (29.02 to 30.98)6-8. 

So - What is a “confidence interval”?  

A confidence interval or CI is defined as a range of 

values that describes the uncertainty surrounding an 

estimate6-8. In the “Biostatistics for Dummies”9 

defines it in simple words informally that a CI 

indicates a range of values that’s likely to encompass 

the true value in population; and a more formally as a 

specified chance of surrounding (or “containing”) the 

value of the corresponding population parameter. The 

interval represents by two numbers as lower and 

upper bounds or limits of the confidence interval; 

sometimes they are written as CIL and CIU, 

respectively. 

It should be noted that the confidence interval itself is 

also an estimate from the samples in our study as it 

depends on how we do sampling, measuring, and 

modeling the numbers that we collected. It could be 

said that confidence interval is the uncertainty 

between the true value of what we are estimating and 

our estimate of that value6. 

How do we calculate confidence interval?  

The most commonly used term in research report is 

"95% Confidence Interval" or “95% CI”. In fact, you 

can see that 95% CI is reported along with different 

parameter estimates, say 95% CI for mean, 

proportion, relative risk (RR), odds ratio (OR) and 

several others. (Note that there might be some 

studies reporting other level of CI such as 90% CI or 

99% CI.) In general, we can interpret 95% CI around 

any estimate somewhat the same way. But let’s look 

into basic concept from the 95% CI of mean as an 

example. 

When we conduct a study to estimate mean in 

population (μ), we draw a sample and calculate X ̅ and 

SD. What we get are only values from that sample. 

The question is - will the value that we get from that 

sample be the value in population? It may or may be 

not, and most likely maybe not. Now assume that if 

we can repeat the study again and again, we will get 

several samples from the same population and get 

several X ̅s and SDs. The distribution of different X ̅s is 

called sampling distribution as the scatter of X ̅s is 

due to sampling that we keep repeatedly doing it. 

Thus, we can calculate the “mean of the means” 

(mean of X ̅s = x ̿). The x ̿ could be said as the estimate 

of μ. The distribution of X ̅s around the μ (or x ̿) is thus 

called “standard error” (SE). But in real life, we never 

conduct the study again and again, so we simply say 

that the estimated μ is the X ̅ that we get from our one 

time sample. And the SE is also estimated from the 

“standard deviation” (SD) that we get from that 

sample as relative to the sample size (n). The simple 

formula in this case is: 𝑆𝐸X  = 
𝑆𝐷

 𝑛
. Based on the concept 

of area under normal cure, the cut offs for the middle 

95% area under curve is +1.96 (we may revisit this 

concept of area under curve at some other time). Thus, 

the 95% CI of the mean estimate is usually reported 

around X ̅+ 1.96*SE. As shown in Figure 1 - an 

example of the estimate of mean2-5. 

 
Figure 1. Estimation of μ in population from the X ̅ and SD of 

a sample 

Similarly, we can calculate SE for different other 

statistics. For example, to estimate proportion of HIV 

infection among teenagers (), the researchers collect 

data among a sample and get a proportion (p). Then 

estimate from p; and they will have to estimate SE 

of p from the formula SE(P)=  𝑝(1− 𝑝)/𝑛  and then 

report the 95% CI of the proportion estimate around p 

+ 1.96*SE10. 
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Estimation of other statistics which is not a single 

parameter estimate also follows the same algorithm. 

For example in the estimate of confidence interval for 

the difference in means (μ1-μ2) from two independent 

samples, the CI of the difference could be 

 where z is the confidence level 

desired (it does not have to be fixed at 95% or 1.96) 

and Sp is the pooled estimate of the common standard 

deviation, . Another example, in 

estimating a risk ratio (RR) or prevalence ratio (PR) 

from two independent samples, RR = p1/p2, the CI for 

RR could be calculated as  

and then antilog or take exp[lower limit of Ln (RR)] 

and exp[upper limit of Ln (RR)] to get the CIL and CIU 

for RR. Similarly, the CI for an odds ratio (OR) can be 

calculated from . Note that these 

are formulas for larger samples11-12.  

How do we interpret a confidence interval? 

The true value for the population does exist and it is a 

fixed number, but we just do not know exactly what it 

is. Although we may conduct a perfect study 

collecting data from the samples that are well (or 

even perfect) representatives of the population; the 

very good estimate of the value in the population that 

we get from our sample may not be the exact value of 

the population parameter11-13. However, we want to be 

somewhat certain about the value that we get from 

our sample so that we can say or make inference 

about the population value. That is, CI allows us to 

say what the true value in population could be13. In 

other words, we may simply explain that if we can 

repeat the studies many times, 95% percent of the CIs 

would contain the true population mean14-16. As 

shown in figure 2, the true value in population, μ does 

exist but we do not know; however, if we repeated the 

studies in the same population again and again 100 

(or 20 in figure 2) times, our 95% confidence interval 

generated from each sample will cover μ in 95 studies 

(95/100 or 19/20) but we may miss that true value for 

about 5 times (5/100 or 1/20)11,15,16. 

Back to the example of the estimation of mean score 

for quality of life in patients with cancer stage 3, 

suppose the true μ is 29.67; and from a sample of 100 

patients with cancer stage 3 we have got a mean 

result of 30 and SD of 5. For these estimates we can 

calculate a 95% CI as: (30-1.96*0.5) to (30+1.96*0.5), 

or we can say that the 95% CI is (29.01 to 30.99).That 

would mean this range of 95%CI does cover the true μ 

of 29.67.And if we repeat the studies again 100 times, 

95% of the times the ranges would still cover 29.67. 

The interpretation of a 95% CI as indicating a range 

within which we can be 95% certain that the true 

population parameter lies is a loose interpretation, 

but is useful as a rough guide17. The strictly-correct 

interpretation of a CI is based on the hypothetical 

notion of considering the results that would be 

obtained if the study were repeated many times; and 

if a study were repeated infinitely often, and on each 

occasion a 95% CI calculated, then 95% of these 

intervals would contain the true value in population 
8,14,17.  

 

Figure 2. Estimation of population mean with 95% 

confidence 

Confidence interval and p-value 

When the study compares outcomes of different 

groups, the report could be presented with an 

estimate of the difference (say mean difference, risk 

difference, risk ratio, odds ratio, hazard ratio) and its 

CI along with p-value. Some studies, however, skip CI 

or p-value. In fact, there is logical correspondence 

between the CI and the p-value. In general, the 95% 

CI for the estimate will exclude the null value (i.e., 

null for RR, OR or HR is 1.0; and null for mean 

difference or risk difference is 0) if and only if the test 

of significance yields a p-value < 0.05; and either the 

upper or lower limit of the 95% CI will be at the null 

value if the p-value is exactly 0.0515,17,18, given that 

the 95% CI and p-value are both calculated from the 

same method. 

Back to our example in an estimation of risk ratio 

between teenagers and adults in getting infection 

with HIV, suppose the RR=3.2 and the 95% CI is 

shown as (0.8 to 5.4); that would mean the true risk 

ratio between the populations of teenagers vs. adults 

might not be 3.2 but could be somewhere in this 

range of 0.8 to 5.4. Since 95% CI includes 1, we will 

also see that p-value >0.05; thus we cannot conclude 

that there is a statistically significant risk difference 

between the two groups. If you want to interpret from 

the 95% CI without looking at the p-value (which the 

researcher may decide not to present), we could still 

say that the risk ratio is not absolute and not 
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significant. In our sample we found that the 

teenagers have higher risk than adults (3.2 vs. 1) but 

the estimates of the true risk ratio in population 

could be that the teenagers have lower risk (0.8 vs. 1) 

or they may have even higher risk (5.4 vs. 1). In 

contrast, suppose the results from the same study 

show the estimate of RR=3.2 and 95% CI (1.9 to 4.5). 

Since 95% CIexcludes 1, we will also see that p-value 

<0.05; thus we can conclude that there is a 

statistically significant risk difference between the 

two groups. If you want to interpret from the 95% CI 

without looking at the p-value, we could say that the 

risk ratio is absolutely shown in one direction. In our 

sample we found that the teenagers have higher risk 

than adults (3.2 vs.1) and the estimates of the true 

risk ratio in populations of the two groups would 

always be that the teenagers have higher risk which 

might be not at (3.2 vs. 1) but could be as low as (1.9 

vs. 1) or as high as (4.5 vs. 1). 

What is “good” or “not good” CI estimates? 

CI could technically tell us how "good" an estimate is; 

it is an important reminder of the limitations of the 

estimates such that the larger a CI for a particular 

estimate, the more caution is required when using the 

estimate.6,7,19 As CI represents margin of error (or the 

width of the interval), a larger margin of error (wider 

interval) is indicative of a less precise estimate12,15,19. 

As an example, in an estimation of risk ratio between 

teenagers and adults in getting infection with HIV, 

suppose the RR=3.2 (i.e., teenagers are more likely to 

get infected 3.2 times than adults) and the 95% CI is 

shown as (1.5 to 60.7); that would mean the true risk 

ratio in the populations of teenagers and adults might 

not be 3.2 but could be somewhere in this range 

which is so wide. 

The width of the CI of a study is usually related to 

the sample size; study with large sample size tends to 

give more precise estimates (or narrow CI)13,17,19. For 

the estimate of continuous variable, the CI might 

depend on the variability (or SD); but for the estimate 

of dichotomous variable, it depends on the chance (or 

proportion) of the event that could occur; and for the 

estimate of time-to-event outcome, it depends on the 

number of events observed17.When the CI is wide, 

there are a number of methods we can use to reduce 

it. In attempt to improve the precision of our results 

(having narrower CI), we could increase our sample 

size (if possible),5,8,11,13. However, as larger sample 

sizes would result in narrow CI, but if you increase 

the sample size to a certain number then it won’t help 

that much anymore. As shown in one reference, 

increasing the sample size from 100 to 500 reduces 

the CI from 9.8 to 4.3, but when sample size is 1,000, 

the CI will reduce down to only to 3.1 which may not 

worth doing it, comparing to what you have to collect 

the data from 1,000 rather than 500 subjects13. 

In the study that compares the outcomes between 

groups, when the estimates come with a wide CI, it 

may not be that the sample size is too small but it 

may indicate that the underlying data are disparate, 

including too few events occurring in one group or 

another or both, or too many outliers and oddball 

data points20. For example, in an estimation of risk 

ratio between teenagers and adults in getting 

infection with HIV, suppose the RR=3.2 and the 95% 

CI is shown as (1.5 to 132.6); that would mean the 

true risk ratio between the populations of the two 

groups could be somewhere in this wide range. If this 

is the case, the researcher should not emphasize this 

statistically significant result that much even though 

we may have a large enough sample size in total but 

it might be that we have too few subjects in one group 

or another, or there might be too few infection 

incidences relative to the sample sizes of one of both 

groups. In fact, when this wide range is shown, the 

researcher should look back at the descriptive 

information about the two groups. It may help 

explain why so.  

So, the question then is - how wide is too wide? As a 

rule of thumb, the researcher should be cautioned to 

oneself and to the readers of that study results if a CI 

is wider than the magnitude of the estimate20. For 

example, when you see a RR=3.2 and the 95% CI (1.5-

132.6), the width of the CI thus is 131.1 which is too 

much higher than the size of the RR. But when you 

have narrower CI, say RR=3.2 and 95% CI(1.9 to 4.5), 

thus the width of the CI is 2.6 which is a fraction of 

the size of the RR; then one can be quite confident in 

the population estimate. 

Final words – how confident you are to interpret your 

estimate(s)?  

The confidence interval tells you more than just the 

possible range around the estimate but it also tells 

you about how stable the estimate is21. A stable 

estimate means that the value that you claim in your 

study result section is one that would be close to the 

true value in population that we never know. Wider 

CI in relation to the estimate itself indicates 

instability and less precision of your estimate. One of 

the nice things about presenting the estimate with  

95% CI is that you never have to commit yourself   

100% on anything in statistics. Claiming 100% 

confidence is impossible anyway since we do not 

conduct the study in the whole population. A classic 

quote (or joke?) about statistics is that “Statistics 

mean never having to say you are certain”. This is 
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quite right as you can always claim “I am under the 

95% confidence limit”. 
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