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Abstract 

In Thailand, pesticide use has increased exponentially over the past 15 years causing critical public health concern. We 

used a geographic information system and applied a remote sensing method in an integrated manner on land use data to 

model the spatial patterns of pesticide exposure. We also used toxicological data to quantify the health effects in terms of 

disability-adjusted life years (DALYs) attributed to pesticide use in Thailand.  We found that 56%of the total population 

(35,144,284 persons) had potential pesticide drift at their residences. Pesticide exposure was mostly due to glyphosate 

and paraquat applied to rice farms and atrazine applied to sugarcane farms, which were more widespread in the central 

and northeastern regions of the country. The total burden caused by pesticide use equated to 10,045 DALYs, of which 

more than half (52%) was due to use of paraquat. Regarding policy implications, all relevant sectors should work on 

reducing paraquat use in crop fields. Reduction of pesticide exposure should be placed as the top priority for making 

health-related pesticide management policies. 
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Introduction 

Pesticides are commonly used to protect crops from 

pests and to increase agricultural productivity.1 

Pesticide use in Thailand has increased significantly 

over the past 10-20 years and the importation of 

pesticides has also shown a rising trend.2 These rising 

trends are of public health concern as pesticide 

exposure can cause both short- and long-term adverse 

health consequences.3,4 Apart from the farmers or 
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gardeners who apply pesticides, others living near 

agricultural fields which have been treated with 

pesticides are also at risk of exposure due to the 

‘pesticide drift’ effect – the unintentional diffusion of 

pesticides and its negative effect on surrounding 

areas.  

Remote sensing (RS) from satellite data is a useful 

tool for assessing pesticide exposure on a wide scale. 

A geographic information system (GIS) is also a 

commonly used tool that helps detect spatial 

dimensions of the determinants of interest through 

geo-referenced spatial databases. Evidence-based and 

transparent decision-making often requires spatial 

information to help stakeholders assess the issues of 

interest more comprehensively.5 The examination of 

these variables in a GIS leads to a better 

understanding of how agricultural systems function 

and interact over space and time.   

This study aims to quantify the magnitude and 

geographical distribution of disease burden in terms 

of disability-adjusted life years (DALYs) attributable 

to pesticide exposure through application of GIS and 

RS.6   

Methods 

We used a GIS and RS of land use data in an 

integrated manner to model the spatial patterns of 

pesticide exposure and applied an exposure-based 

approach based on toxicological data to quantify the 

human health effects in terms of DALYs attributed to 

pesticide use in Thailand during 2017. The ‘Global 

Burden of Disease Risk Assessment Framework’ was 

employed as a conceptual framework for this study 

(Figure 1). The framework highlighted two 

components: (i) exposure and effect size estimation, 

and (ii) health impact indicators assessment.7 

Exposure and Effect Size Estimation 

Exposure and effect size estimation was conducted 

through a GIS-based exposure model. The model 

describes interactions between pesticide drift distance 

and populations living near the crop fields. The 

estimation was divided into subcomponents as follows.  

Pesticide-Use Data  

Concerning pesticide selection, we selected the most 

frequently used pesticides in Thailand, namely, 

atrazine, glyphosate, paraquat and chlorpyrifos, 

based on the import quantity ranking.8 Pesticide use 

data was published in the report from the Food and 

Agriculture Organization of the United Nations (FAO) 

and the World Health Organization (WHO) between 

2009 and 2014.9,10 Noting that the FAO/WHO report 

did not include local pesticide use, we therefore 

assumed that the total pesticide use was twice the 

amount reported by the FAO/WHO. This assumption 

was supported by a prior study by Lamers et al.11 

Figure 1. Conceptual framework of this study 
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Crops Data 

We obtained the Moderate Resolution Imaging 

Spectroradiometer satellite crops data processed from 

the Geo-Informatics and Space Technology 

Development Agency in 2014. The analysis was 

limited to four types of crops: rice, cane, cassava and 

corn.12 The ground data between January 2014 and 

December 2014, the most recent annual data 

available, were provided in the form of Geographical 

Positioning System reference data points.  

Population-Weighted Pesticide Exposure Model 

We modelled the population-weighted pesticide 

exposure in residential areas and crop fields using RS 

land use data and pesticide drift distance. We created 

a pesticide exposure map by applying the pesticide 

fate and the fraction loss in the environment and in 

crops.13 Population data and the pesticide exposure 

model were combined together to estimate the 

population at risk of pesticide drift. The population 

data was obtained from the US grid population 

dataset, generated in 2000 by the Socioeconomic Data 

and Applications Center, Columbia University.14 The 

population data were arranged in grids of size 30 arc-

second (approximately 1 km at the equator).  

We assumed no dynamic population movement 

around the residential areas because we had no 

information on farmers’ activities at their place of 

residences or in the fields.  Based on the literature 

review, any person living within a buffer distance of 

110 meters from the centroid of a grid in which a 

pesticide was applied were assumed to be exposed to 

that pesticide (so-called, pesticide drift).15,16 110 

meters was used to differentiate exposure from non-

exposure based on previous studies by Fritz et al and 

Longley et al.17,18 

Health Impact Estimation 

We used risk and regulatory hazard-based 

toxicological effect indicators to estimate the pesticide 

health damage factors (HDFs) in terms of DALYs.19 

HDFs are the estimates of toxicological impacts that 

are attributable to the emission of pesticides into the 

environment over time and space.19,20 The HDFs 

consisted of two factors: (i) the intake fraction: the 

fraction of a release taken by the population taking 

into account the fate of chemical exposure , and (ii) 

the effect factor: the incidence of chronic toxicological 

effect per unit intake by the population (in this study, 

focusing on cancers).19 The equation for HDF is 

described as: HDFs = IF × β × D where IF is the 

intake fraction of the mass of pesticide (in kg) 

released into the environment of a population grid, β 

is the dose-response slope factor (also known as ED50 

– the median effective dose) and D is the burden of 

disease (DALYs/incidence). More than 99.9% of 

pesticides applied for pest control application 

remained contaminated in the residence and 

environment outside field application, and another 

study reported that application of indoor-released 

chemical in residences produced approximately 10-3 to 

10-1 of intake.13,21 We therefore assumed that fraction 

of 1% of pesticide residue in population-weight 

pesticide exposure entered the human. 

Dose-Response Slope Factor (β or ED50) 

Since pesticide dose-response slope factor for human 

toxicity is not available in most substances (including 

the four pesticides selected in this study), we 

therefore estimated this factor based on animal-based 

dose-response data. We then calculated the dose-

response slope factor from a chronic lifetime dose of 

pesticide affecting 50% of the animal population 

(ED50). ED50 is the chronic dose-rate which would 

induce cancers in 50% of the tested animals at the 

end of the standard lifespan.22 The formula for 

estimating ED50 is as follows. 

 

where cfED50 = 0.5 equating the human response 

level corresponding to ED50; NOEL =  non-observed 

level effects (varying by species and substances), 

cfNOEL = 9 equating NOEL-to-ED50 extrapolation 

factor, BW = 70 kg/person denoting an average body 

weight; LT = 70 years denoting an average human 

lifetime; cfs = correction factor for the interspecies 

difference; and cftime represents difference in exposure 

time. 

Burden of Disease Data (D) 

The burden of disease was described as DALYs/ 

incidence and categorized into two groups (cancerous 

versus non-cancerous effects). We relied on burden of 

disease data obtained from the International Health 

Policy Program, Thailand, in 2009 and reviewed the 

literature on selected health outcomes of both 

cancerous and non-cancerous effects.23 The relevant 

diseases were mentioned in a study by Huijbregts et 

al in 2005.24   

Model Analysis: Correlation between Estimated 

Pesticide Exposure and Patient Volume 

We determined the association between pesticide 

exposure and the number of pesticide poisoning cases 
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reported in 2017, defined as any patient with an ICD-

10 code of T60 (toxic effect of pesticides) using 

Pearson’s correlation coefficient (r-value). This data 

was obtained from the National Health Security 

Office and analysis was done at the provincial level. 

Statistical significance was set at 0.01 and all p-

values were two-tailed.  

Results  

Exposure Model 

Using the population grid centers, 56.0% of the total 

population (n=339,448 grids) or 35,144,284 persons 

had crops planted within 100 meters of their place of 

residence. The spatial distribution of exposure to the 

four selected pesticides is presented in Figure 2. The 

spatial pattern of exposure for all four pesticides were 

relatively similar. Residents in the central and 

northeastern region had a higher level of pesticide 

exposure than those in other regions. The maximal 

exposure per population grid level for atrazine, 

glyphosate, paraquat and chlorpyrifos was 

approximately 47.2, 12.8, 8.7 and 3.4 kg, respectively. 

Figure 2. Exposure distribution of four selected pesticides in Thailand: 

paraquat (a); atrazine (b); glyphosate (c); chlorpyrifos (d) 

Table 1. Crop-specific level of exposure to different pesticides in Thailand, 2014 

Note: Dose response relationship for paraquat, atrazine, glyphosate and chlorpyrifos equated 0.104, 0.037, 0.013 and 0.031, 

respectively (unit = life-time incidence/kg intake). †1 rai = 1,600 m2 
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The level of exposure for various crops based on our 

model is summarized in Table 1. The majority of 

pesticide exposure was attributable to glyphosate and 

paraquat applied to rice farms and atrazine applied to 

sugarcane farms. Among the four pesticides, atrazi ne 

contributed the greatest level of exposure (3.3 million 

kg) followed by glyphosate (2.7 million kg).  

Health Impact Estimation  

Figure 3 shows the estimated yearly number of new 

cancer cases, including carcinoma, sarcoma, leukemia, 

lymphoma and myeloma, attributed to each of the 

four pesticides. Paraquat was responsible for the 

greatest number of cases (192,046) followed by 

atrazine (119,265) and glyphosate (33,942). 

The incidence/100,000 population exposed by province 

is shown in Figure 4. A similar pattern for each 

pesticide was apparent; the Northern and Central 

regions had higher cancer incidences. Paraquat and 

atrazine accounted for the highest incidence rates in 

these regions compared to the other pesticides. 

DALYs lost attributable to the four pesticides are 

demonstrated in Table 2. The total burden of disease 

Figure 3. Estimated yearly incidence of cancer by type of pesticide 

Figure 4. Incidence of relevant 

cancers per 100,000 population 

exposed by type of pesticide and 

province, Thailand, 2014: paraquat 

(a); atrazine (b); glyphosate (c); 

chlorpyrifos (d) 
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caused by all four pesticides accounted for 10,044.7 

DALYs. Over half (51.6%) of the burden was due to 

paraquat exposure (5,185.2 DALYs).  

Table 2  Estimated DALYs by type of pesticide. 

 

Table 3 summarizes the correlations between 

pesticide exposure and pesticide toxicity. All 

correlations were highly significant, ranging from 

0.421 to 0.691. 

Discussion 

This study presented the geographic health impact 

from exposure to four commonly used pesticides in 

Thailand. Results showed that about 56% of the Thai 

population (about 35 million people) were exposed to 

pesticides in 2017. About 70% of the exposed 

population live within 100 meters of rice farms 

treated with pesticides, of which glyphosate and 

paraquat were the main ones. Paraquat caused the 

greatest health impact (about 5,185 DALYs lost) 

among the four pesticides of interest.  

The highest residual pesticide was atrazin with 

almost three million kilograms used, representing 

38.4% of total atrazine imports in Thailand. The 

amount of residue depended, to a certain extent, on 

the amount of agricultural land used. Atrazine 

exposure per population grid in the US was about 2-7 

times higher than in our study.25 This difference 

might be due to application of pesticide aerial 

spraying in the US, a method which leads to a more 

effective distance of pesticide drift.  

Another study in the US, which applied RS land use 

data with a buffer distance of 500 meters, reported a 

pesticide exposure level of about 0.05 kg/rai in 

agricultural areas.26 This is approximately one sixth 

of the estimate reported in our study (0.3 kg/rai). This 

difference might be explained by differences in the 

definition of exposed group and in data source. To 

improve the accuracy of estimated pesticide exposure 

among the exposed group, the residential mobility 

should be taken into account. For example, Rull & 

Ritz simulated a random selection of population 

controls and applied a zonal exposure model on 

pesticide use reports in California which contained 

more in-depth details compared to our study.26   

For health impact estimation, we selected health 

outcomes that can be associated with pesticide 

exposure based on burden of disease data in the Thai 

population in 2009. Long term pesticide exposure is 

linked with the development of many diseases, such 

as Parkinson’s disease, respiratory diseases and 

depression.27-29 Pesticide exposure is also found to be 

related to cancer risks, including non-Hodgkin's 

lymphoma and leukaemia.30 With respect to previous 

studies, the use of an average disease-specific health 

is a good alternative given the lack of critical-effect 

information.30,31 However, Huijbregts et al reported 

that as pesticide can cause multiple diseases, the 

estimation on health impact should use the disease 

with the highest DALY to account for the damage 

factor.30  

From a methodological point of view, our study had 

both strengths and limitations. The application of 

GIS and RS on land use data at a national level 

meant that our results could partly represent the 

situation of pesticide use nationwide. Another 

advantage of using RS data was that it allowed the 

analysis to delve into the local scale without requiring 

Table 3 Pearson’s correlation analysis between pesticide exposure and pesticide toxicity 

Note: * based on the International Statistical Classification of Diseases and Related Health Problems version 10; T60.0 = 

organophosphate and carbamate insecticides, T60.3 = herbicides and fungicides, T60all = all types of pesticides. 
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expensive or time-consuming activities.  However, 

there remained some limitations in this study. First, 

this study relied on available pesticide application 

fate  and the FAO/WHO report on food residues.9,10 

The actual pesticide used might be much more than 

that reported by the FAO/WHO.32 Second, 

measurement errors may have occurred in terms of 

the resolution of RS land use data and intake 

assumption. The pesticide drift distance in this study 

was based on a local study and a recommendation 

from the US Environmental Protection Agency.9,10,15,16 

The pesticide drift might spread up from 500 meters 

to 1 kilometer, depending on the spraying tools. 

Pesticide spraying data along with its residue 

detection at field scale are essential to improve the 

estimation of pesticide application in Thailand. For 

intake fraction, Bennett et al reported that an intake 

fraction to exposed population of 10-5 to 10-7 could be 

applied as for every kilogram of pollutant released 

into the environment; but for pesticides with a longer 

environmental lifetime, the intake fraction might be 

higher.33 In addition, we used population grid data 

from 2000.34 Updated data is now available that 

includes demographic characteristics such as age and 

sex. Application of this new information may improve 

estimation, especially in vulnerable populations such 

as children and the elderly.  Third, we did not apply a 

full-scale simulation of the pesticide fate and 

transport from farmers’ pesticide spraying along the 

food-chain. A related pesticide assessment in aquatic 

ecosystems would improve the exposure model. 

Finally, we did not include various neighborhood 

crops or horticultural areas, such as fruit orchards, 

rubber tree plantations, and oil palms in this analysis. 

Some of these crops were reported to have pesticide 

residue.35-37 Accounting for these neighborhood crops 

will help improve the accuracy of health burden 

estimation in the future.  

Conclusions and Recommendations 

Our results can be beneficial to researchers and local 

stakeholders to understand the situation of pesticide 

exposure and its ecological risks in Thailand. We 

clearly demonstrated that all four pesticides used in 

economic crops were associated with risk of cancers in 

the Thai population.  The greatest health gain can 

thus be realized by reducing pesticide exposure, 

especially for paraquat and atrazine. This should be 

the top priority in all health-related agricultural and 

environmental management plans. In addition, our 

results can help policy makers design and prioritize 

pesticide reduction strategies pinpointing the pattern 

of pesticide use in certain areas based on the GIS and 

RS data. The database can also help researchers 

conduct further epidemiological studies related to 

other chronic diseases such as neurological disorders 

and birth defects at provincial or national levels. 

Spatial maps of pesticide exposure and health impact 

could be used to alert local populations and policy 

planners to potential contamination of the ecological 

systems in their residential areas due to pesticide use. 
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