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Grammar of Science: Gee Whiz... It's GEE!
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“I have one to many children in a house!” A public
health officer looks so worried.

“What is the problem with that?”

“T did home visits in a community, to the household
with a tuberculosis (TB) case; and I want to know
whether the TB case will be the source of disease
transmission to the children under five years old
within his/her house or not. But each house has
different number of children: some houses only one
child, others vary 2-5 children. I even find a house
with 10 children. I performed tuberculin skin test in
all children — and some of them are positive while
other negative, though they are living in the same
house. If the children in a house are called household
contacts and the TB patient is called an index case —
then, how can I estimate the risk of acquiring
infection from the index case among the household
contacts?”

“This is called ‘clustered data’ structure. There are
many ways to analyze clustered data. One of the
popular statistical methods that can handle this type
of data is ‘Generalized Estimation Equation’, so-called
GEE. This clustered data cannot be analyzed by
standard statistical models like linear regression,
logistic regression, etc. The main reason is that the

outcomes measured from each individual are
considered “not independent”, but potentially
“correlated”, among the individuals (household

contacts) who share the same exposures (index case
and other household characteristics). Let’s take a look
in more detail.”

What kinds of data can be used in GEE model?

GEE is a statistical method that can be applied for
“clustered data” and “repeated measures data”.'*
When we talk about these two types of data structure,
they are the “multivariate” datasets, meaning that
there are more than one outcome observations (Y’s)
per case/unit, which is different from the “univariate”
datasets with only one outcome observation (Y) per

case/unit (Figure 1).

structure refers to the sets of data when we have

Repeated measures data

repeated observations of an outcome variable
measured from each individual (case) over time on
multiple visits (Y’s of an individual at different times:
Yt1,Yt2,Yt3). Clustered data structure refers to the
sets of data when outcome observation of different
individuals (Y’s) are grouped (or nested) within a
certain unit (subgroup/cluster). The study may have
either one exposure variable (X) or more than one
exposure variables (Xs). The statistical method

with >1 Xs is called “multi-variables” analysis.

(1) Study with one outcome measure (Univariate Outcome)
[ Y € X Simple:  [1outcome] [1 exposure]

€<— X; X; X3 Multiple: [1outcome] [>1exposures]

(2) Study with the same outcome measured overtime (Repeated measures outcome)

Yﬂ ] € X Simple: [1outcome measured >1 times] [1 exposure]

2

3 «— )(1 )(2 X3 Multiple: [1 outcome measured >1 times] [>1 exposures]

(3) Study with the same outcome measured among different subjects nested within a cluster
(Clustered data)
‘; X Simple: [1outcome measured from >1 subjects] [1 exposure]

y | € X; X, X; Multiple:[1 outcome measured from >1 subjects] [>1 exposures]

Cluster

Figure 1. Univariate vs. multivariate data structure

Repeated data structure is shown as an example in
figure 2 (a). In the study to determine the association
between vitamin A deficiency and respiratory
infection in school children, the researchers collected
data on respiratory infection from each student at
three time points (Months 0, 6, 12). Clustered data
structure is shown in figure 2 (b) for the study of the
public health officer in which he collected data on TB
infection among all household contacts within each
house. In fact we can say that, in repeated measures,
study outcome data are clustered (repeated) within
an individual; and in clustered or nested study,
outcome data of individuals are clustered within a
certain unit. These are the examples of only one level
of clustering. It is also possible to have a multilevel
data structure, in which we have multiple levels of
grouping units, for example: children are clustered
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(1) Example of “longitudinal data” or “repeated measures” (1-level)
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(2) Example of “clustered data” (1-level)

Level - Child (id)

Analysis Unit — Visits (month: 0, 6,12)
Outcome - Infection (infc: 0,1)
Exposures/Covariates-

¥ Vitamin A deficiency

v Sex

Level - Household (hh_id)

Analysis Unit — Child (child_id)

Outcome - TB infection (tb_child: neg, pos)
Exposures/Covariates-

v Child age

v Index case relationship (mother, father, grandparent, other)
v" Number of hours spent between Index cases and Child

hh_id child_id tb_child childage tb_case hrscont

1. 1 - 101 pos 2 17 - 24
2. 2 201 neg 8 1 8
3. 2 202 neqg 2 1 -8
4. 2 203 neg 3 1 -8
5. 2 204 neg € 1 -8
6. 2 205 neg 2 1 8
7. 2 206 neg 6 1-8
8. 2 207 neq 11 1 -8
9. 3 301 pos 14 9 - 16
10. 3 { 302 pos 14 mothe 9 - 16
11. 3 303 pos 10 mother 9 16
12. 4 { 401 neg 3 grandpar 9 - 16
13. 4 402 pos 8 grandpar 9 - 16
14. 5 —{_ 501 neg 3 father 9 16
15 [ —_ 502 pos G mother 9 - 16

Figure 2. Examples of repeated measures datasets and clustered datasets

within a classroom (level 1), and classrooms are
clustered in a school (level 2), and so on.

What is GEE?

GEE was proposed by Liang K-Y and Zeger SL in
19865. GEE is a generalized model unifying in a
single method. The model of GEE can be transformed
into three classic generalized linear models (GLM):
linear, logistic and poisson depending on the type of
the outcome (Y) variable.%¢

¢ Linear regression (continuous outcome)

o Distribution of Y: ~ Normal; mean of
Y is y, average of the outcome

o Transformation of Y: none (identity
link)

o Equation y= fo + fiXat ...+ S Xk

e Logistic regression (binary outcome)

o Distribution of Y:~ Bernoulli; mean of
Y is p, probability of having outcome

o Transformation of Y: logit link

o Equation: logit(p) = log (Odds) = log (p

11-p) = fo + PriXat ...+ Sk Xk

¢ Poisson regression (incidence or count

outcome)

o Distribution of Y ~ Poisson, mean of Y

is A, rate per time unit, or mean count
per unit, of the outcome events

Transformation of Y: log link

Equation: log(1) = fo + fiXa+ ...+ [k X«

The three classic GLM models are based univariate
data. In GLM, an outcome variable (Y) is measured
for each and thus, the Y’s for all
individuals in the study are considered “independent”.
In contrast, GEE models are based on multivariate
data where

individual,

variables potentially

“correlated” because Y’s are measured within the

outcome are
same individual (for repeated measures) or among
different individuals within the same exposure
variable(s) (for clustered data). GEE thus simply
extends such GLM models by taking into account the
correlated Ys within a case (of repeated measure) or a
grouping unit (cluster). If the researchers did not take
into account the correlation among Ys, the estimated
regression coefficients (fs) will be less efficient (i.e.,
widely scattering around the parameters or true
population values estimated)’.

How does GEE model fit the data?

In fitting the extended regression model, GEE uses
quasi-likelihood estimation method to estimate the
expected (predicted) value of the outcome, [E(Y)], via
the consistent estimates of regression coefficients, S of
Xs - [g(BiX)], and its variance-covariance (correlations)
among Ys.>8

E(Y) = g(BX), Var(Y) = Corr(Yy,Ys) for subject i" and j-k™ times/units

Liang and Zeger (1986) proposed GEE under the
asymptotic theory in which they utilize outcome
values across study subjects to estimate a “working
correlation” matrix, assuming that such correlations
are explicitly accounted for the time dependence or
the clustering effect, and to achieve greater
asymptotic efficiency®. To explain asymptotic theory
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in layman terms, it means “a large sample theory”

which is typically used when estimating any
parameters or statistical tests based on the
assumption that the sample size would grow

indefinitely (n > «©)°. That means GEE fits better
when the sample size is getting larger.

GEE is considered as a semi-parametric model as it
estimates parameters (£ coefficients) in the equation
without full specification of the joint distribution of
the outcome observations overtime or within clusters.
The model derives from the specification of the
likelihood for the (univariate) marginal distributions
of the outcome variables (Ys) and then incorporates
the “working correlation” matrix into the model.* In
other words, there are three steps in modeling GEE.
The three steps are: (1) a naive regression analysis is
carried out, assuming the outcome observations
within the individual/cluster are independent; (2) the
residuals (observed - predicted) are then calculated
from the naive model, and used to estimate the
working correlation matrix; and (3) the regression
coefficients are subsequently refitted using iterative
process by treating the within-subject correlation as a
nuisance (covariate) variable.!?

The “working correlation” matrix is based on an
important assumption that the outcome observations

(Correlation matrix)

j=1k
10 0 00 0
010000
) 001000
CorrYij-J:Lk 000100
000010
Lo 0000 1]
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rlppppp
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(Ys) measured over time or within individual/unit are
correlated or clustered. That means observations (Y
at time 1, 2, 3,
individuals within each unit) are not independent?.
There are typically four types of correlation
structures that we have to assume prior to fitting the

of each individual;, or Y of

model. Figure 3 presents structure and assumption of
each type of correlation matrix®®7,

In analyzing the clustered data, we will typically have
an outcome response measured from each study
subject within a cluster/unit, and thus, there is
usually no problem with missing outcome data. But in
the repeated measures situation, there are always
study subjects who missed some visits and thus,
outcome data are missing.

In analyzing the repeated measures data with
missing outcome values at different visits, GEE uses
the pairwise method (i.e., “all available pairs”); all
non-missing pairs of data are used in estimating the
working correlations. That means we do not lose the
study subjects that had missing outcome data at
certain visit(s)!®>. There is no need to perform
imputation for the missing data. However, GEE with
robust and optimal option was developed to handle
missing data that are either missing at random (MAR)
or missing not at random (MNAR)™.

(Correlation assumption)

Independence — Outcomes measured overtime were
independent. Outcome measured at time 1 was not related to
outcome measured at time 2 or other times. Outcome
measured at time 2 was not related to outcomes measured at
other times, and so on.

Exchangeable — Outcomes measured overtime were
similar. Outcome measured at time 1 was related to
outcome measured at time 2 at the same level as its
relatedness to other times. Outcome measured at time 2 was
also related to outcomes measured at other times at the
same level, and so on.

Autoregressive — Outcomes measured overtimes had
waning relationship. Outcome measured at time 1 was
correlated with outcome at time 2 at higher level than
its correlation with outcome at time 3, and so on.
Similarly, outcome measured at time 2 was correlated
with outcome at time 3 at higher level than its
correlation with outcome at time 4, and so on.

Unstructured— Outcomes measured overtime were
related at different levels. Outcome measured at time 1
correlated with outcome at time 2 differently from its
correlations with outcomes at other times. Outcome at
time 2 correlated with outcome at time 3 differently
from its correlations with outcomes at other times. and
soon.

Figure 3. “Working correlation” matrix
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Case study of GEE

For the case scenario of the public health officer, the
GEE model to be fitted is for the clustered categorical
outcome (not having or having TB infection). We now
consider to fit the logistic regression model with
binary outcome data (Y=0,1). Note that, similar to all
regression models, the exposures (X’s) can be
categorical or continuous data. In this study, the
exposures are child’s age, types of TB index case
(father, mother, grandparent, other) and duration of
contact/exposure (1-8, 9-16, 17-24 hours per day). As
shown in figure 4, the GEE model to be fitted is the
extended logistic regression with correlated and
clustered data (children residing in each household).
While the working correlation matrix for a repeated
measures study can be specified as one of the four
structures, the appropriate working correlation
matrix to be used for clustered data study is only
exchangeable.

Based on the analysis of the data collected by the
public health officer, the results are shown in figure 5.
The goal of GEE is to make inferences about the
population parameter(s) when accounting for the
within-subject correlation. As GEE is the extended

regression model, the interpretation of the model
follows the regular regression model such that that
for every one-unit increase in a covariate (X) across
the population, how much the outcome response (Y)
would change’. We can say that the odds that a child
got infected with TB increases significantly by 2.3
and 4.9 times if the TB-case is the child’s father and
mother respectively, when compared to the odds of
the reference group (TB case whose relationship with
the child in “other" category). Compared children
whose ages are different by one year, the odds seems
to increase by 1.4 times, but is not statistically
significant different. Notice the differences of the two
logistic regression models, GEE (Figure 5) vs. GLM
(Figure 6), the estimates of odds ratios and p-values
are different.

[ ] Y =

th_child
(category)

X3

hrscont
(category)

X1 X2
childage th_case
(continuous) (category)

Logistic
regression | log(Odds.Y) = log Pr__ Lo+ BX, + BX, +BX,
model: 1-py c Ippppp
plpppp
polppp
GEE . Do i prpIpp
(Logistic) | log(OddsT)=log 75— =fi+ AX, + BXy + BXs 4| nop e 1h
model: '

Figure 4. GEE (extended logistic regression) model

. xtgee tb child childage ib4.tb case i.hrscont,i(hh id) fam(bin) eform
tb_child Odds Ratio Std. Err. zZ P>|z| [95% Conf. Interval]
childage 1.401464 .2483005 1.91 0.057 .9903136 1.983313

tb_case
father 2.393673 .8601755 2.43 0.015 1.183538 4.841137
mother 4.987524 2.306963 3.47 0.001 2.014487 12.34825
grandparent 1.502095 .9032813 0.68 0.499 .4621991 4.881637
hrscont
9 - 16 1.529526 .4869222 1.33 0.182 .8195552 2.854536
17 - 24 2.5544 1.90013¢ 1.26 0.207 .5944391 10.97666
_cons .2563081 .1105602 -3.16 0.002 .1100503 .5%69443

Estimated within-hh id correlation matrix R:

cl c2 c3 c4

rl 1.0000

r2 0.4658 1.0000

r3 0.4658 0.4658 1.0000

r4 0.4658 0.4658 0.4658 1.0000
r5 0.4658 0.4658 0.4658 0.4658
re 0.4€58 0.4658 0.4658 0.4658
r7 0.4658 0.4658 0.4658 0.4658

c5 co c7

1.0000

0.4658
0.4658

1.0000

0.4658 1.0000

Figure 5. Analysis of the case scenario with generalized estimation equation (GEE)

. logistic tb_child childage ib4.tb_case i.hrscont

tb_child 0dds Ratio std. Err. zZ P>|z| [35% Conf. Intervall]

childage 1.383615 .2591553 1.73 0.083 .9584795 1.997321
tb_case

father 2.144275 .6850383 2.39 0.017 1.146422 4.010666

mother 4.541624 1.918767 3.58 0.000 1.984228 10.39515

grandparent 1.450702 .7609011 0.71 0.478 .5189414 4.055441
hrscont

9 - 16 1.811087 .537264 2.00 0.045 1.012577 3.239296

17 - 24 3.15085 2.418971 1.49 0.135 6997506 14.18771

_cons .24001 .0984541 -3.48 0.001 .1074136 .5362896

Figure 6. Analysis of the case scenario with binary logistic regression (GLM)
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The GLM model considers the outcome of each record
(household contact case) are independent while the
GEE model takes into
outcomes of household contacts within the same
house are correlated. In fact, if GEE model is fitted
with working correlation matrix specified as

consideration that the

“independent”, we will get the same results as shown
in GLM model.

How good is GEE?

In fact, another popular method that can be used to
analyze repeated measures or clustered data is the
“Multilevel Mixed Model” which handles within-
subject variation in the regression model with
random intercepts/slopes for each individual rather
than using the “working correlation” matrix!!. (We
may talk about the Mixed model at other time.) Note
that GEE provides the result as a generic equation
applied to all in the population of the study, that is
why it is called “marginal population average” model,
but the Mixed model will provide the result as
equations that are subject-specific>!%12, Basically GEE
generates the fix effect only. But when the question is
to find out the variation of the effect between clusters
AND within the clusters, then random effect model
like the Mixed effect model could be used. The use of
working correlation (or variance-covariance) matrix
as a nuisance parameter in the equation has made
fitting GEE model easier than Mixed modell. Both
methods can handle missing data, time-varying
covariates (exposures changed overtime or across
individuals), irregularly-timed (timing of visits varied
across individuals in repeated measures). GEE
typically provides
incorrect correlation structure is specified; but the
Mixed model has assumption that the researchers

consistent estimates even if

should correctly specified the correlation structure,
which is sometimes difficult in practice. GEE is not
very strict with the distributional assumptions, but

Mixed model requires normality assumptions.%?

GEE is limited that it can handle only one level of
correlation or cluster. In the example showed in
figure 2, the observations are nested at one level
(times/visits within each student, or children within
household). However, the Mixed model can handle
data nested within more than one level of clusters®.
For example, malaria patients nested within villages,
and villages nested within sub-district, and sub-
district nested within district. If the researchers
considered different layers of clustering, they need to
use the Mixed model.

“Gee Whiz.... It is GEE to handle my -clustered
data...”, the public health officer exclaims.
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