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Last time, we have shown how ‘Log” play roles in 

mathematics and statistics. Now we will take a close 

look at how it applies in data management and 

analysis. 

Statisticians also love “log transformed” data 

Many statistical procedures have the assumption that 

the variables in the model should be normally 

distributed. A significant violation of the assumption 

can increase errors in study conclusion, depending on 

the nature of the methods used and the level of non-

normality1. Even though we can avoid such limitation 

by using non-parametric statistics that has no explicit 

assumption about normality, we may sometimes still 

face with inconclusive results due to the effect of 

severe non-normally distributed data2-3. 

When our data are not normal, we should explore the 

reasons behind it. The non-normality may be due to 

mistakes in data entry (not real extreme-value data), 

presence of outliers, or the nature of the variable 

itself. Let’s look only at the issue of the latter case 

where skewedness is due to the nature of variable 

itself. There are variables in biomedical and clinical 

study that are almost always not normal, e.g., viral 

load, titre, length of stay in hospital admission, 

survival time, etc. But we want to use statistical 

procedures that require normality assumption for 

those variables. One way to do it and most commonly 

used is to do “data transformation” or changing the 

scale of the data. Data transformation is not cheating, 

but rather look at data in another way, for example, 

we can say that 4 is equivalent to square-root of 16 

(√16). When we change the scale of the data, the 

distribution will change; generally the extreme values 

will be pulled closer, e.g., √9→3, √16→4, √25→5. 

There are many valid reasons for utilizing data 

transformations, not only for changing the non-

normality characteristics but also for improving 

variance stabilization, conversion of scales to interval 

measurement, etc.1-4 

Three data transformations most commonly used in 

handling non-normality included: square root, 

logarithm, and inverse. If the distribution of a 

variable has a positive skew, “log transformation” will 

usually be used to make that positively skewed 

distribution to be more approximately normal4. As an 

example, if we plot the histogram of viral load 

collected from HIV-infected patients, we will see a 

significant right skew in this data (most patients had 

low amount of viral loads but a few had extreme 

amount of viral loads). After we “take log” of the raw 

data of viral loads, then we plot the histogram of the 

logarithm of viral loads, we now see a distribution 

that looks much more like a normal distribution as 

shown in figure 1.  

 

Figure 1. Data transformation in Log base 10 scale (Viral 

load of HIV patients) 

In this example, we took log base 10, but we could 

take “natural log” or log of other bases and getting 

somewhat similar normality pattern from different 
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scaling of data transformation. However, when we 

interpret the results of the statistical procedures, we 

have to explain that transformed variable in log-scale, 

or we have to “anti-logarithm” the results of that 

variable back to original scale (log10X → 10X, ln(X) = 

logeX → eX, etc) 

What is “Logit” in logistic regression? 

Before we talk about “logit” in “Logistic regression”, 

let’s start with the basic “Linear Regression”. Linear 

regression is a statistical technique for relating the 

outcome or dependent variable (Y) to one or more 

predictors or exploratory/independent variables (X). 

The model is based on a linear relationship between 

the expected value of Y (y-hat) and each independent 

variable (when the other independent variables are 

held fixed)5. 

 

Figure 2. Linear regression model 

As shown in figure 2, the “structural model” (generic 

model) would tell us that when exploratory variable 

(X) change for 1 unit, the outcome Y would change 

about β (after controlled for or adjusted for other 

exploratory variables in the equation). In other words, 

the structural model describes how the mean 

response of Y changes with X5-7. Based on the 

example of variables in linear regression equation in 

figure 2, we can say that the mean differences of 

blood pressure (BP) between patients taking Drug A 

vs. Drug B is about β1; between male vs. female 

patients, about β2; and between those ages difference 

of 1 year, about β3. 

There are several assumptions in fitting the linear 

regression model. Historically, the normal 

distribution had a pivotal role in the development of 

regression analysis and it continues to play an 

important role6. Assumptions about outcome 

variables are that Y should be normally distributed 

and variance of Y should be constant5-8. When the 

variance of the Y is not constant, it will lead to 

violation of another assumption that the error 

variance in the model becomes not constant (or a 

fancy term - assumption about homoscedasticity in Y). 

The assumption about error variance, so-called the 

“error model”, indicates that for each particular X, if 

we have or could collect many subjects with that x 

value, their distribution around the population mean 

should also be normally distributed. The error model 

suggests that the linear regression not only assumes 

“normality” and “equal variance”, but also the 

assumption of “fixed-X” (i.e., the explanatory variable 

is measured without error)7-8. 

When the assumptions are significantly violated, the 

results of the analysis may be incorrect or misleading. 

For example, if the assumption of independence of 

variables in the model is violated, then model may 

not be appropriate. If the assumption of normality is 

violated, or outliers are present, then the linear 

regression goodness of fit test may not be the most 

powerful or informative test available5,7. 

When we encounter a problem with the equal 

variance or normality assumptions, we may solve it 

by using data transformation either using log(y) or y2 

or √y or 1/y instead of y for the outcome. But if we 

get into non-linearity relationship between 

exploratory and outcome variables, we may try 

transformation of X, Y, or both. In fact, this generic 

model written as “linear” in “linear regression” does 

not imply that it can apply for only linear 

relationships. If we transformed X or Y then we could 

assess non-linear relationships to be represented on a 

new scale that makes the relationship linear. 

However, technically the β’s must not be in a 

transformed form7-8. 

Now let’s discuss about “logistic regression”. 

The logistic regression model is a statistical technique 

for presenting the relation between a binary response 

or a multinomial response/outcome (Y) and several 

predictors or exploratory variables (X)9. This type of 

outcome is very common in the field of health science 

and others, say die - not die, cured - not cured, mild – 

moderate – severe, etc. Historically, the “logistic 

function” was originally invented for the purpose of 

describing the population growth and it was evolving 

by many statisticians in several academic fields in the 

US and European. The “logistic regression” name was 

given by a Belgian mathematician, Pierre François 

Verhulst (1804-1849)10. 

We could say that the emergence of the logistic 

function started from the growth curve and 

mathematically it was evolved making it a close 

resemblance to the normal distribution 

function10,11.To make it easier in explaining the basic 

concept of logistic regression, let’s follow the same 

idea of linear regression. The model is based on the 

same generic model of linear relationship between the 

expected value of outcome Y (y-hat) and each 

exploratory variable (when the other exploratory 

variables are held fixed). The difference is that Y in 
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linear regression is continuous but Y is logistic 

regression is categorical.   

 
Figure 3. Logistic regression model 

Figure 3 presents an example of logistic regression 

model of binary outcome. We now don’t want to know 

the expected value of BP like in linear regression but 

we want to assess the expected value of hypertension 

(HT), whether the person has or do not have HT, 

coding as 1 and 0, respectively. As shown in equation 

(a), it is not possible mathematically to get expected 

value of Y (as 0 or 1) from the calculation of known 

values of Xs and the estimated β’s in the equation. 

The problems are also about the assumptions of the 

generic model. As previously mentioned the main 

assumptions of linear regression are about the “error 

model” that the errors or residuals (distances of each 

X around the expected mean of Y) are normally 

distributed and Y does have to be continuous and 

measured on an interval or ratio scale5-8. 

Unfortunately, our Y (HT) now is a categorical 

variable and it could not fit these assumptions. No 

matter what data transformations, we could not get 

normal residuals from a model with a categorical 

response variable12-14.   

Since we cannot use the equation to get the expected 

value Y of 0/1, we then say that we want to use the 

equation to explain the “odds” of getting the outcome 

Y14-16. “Odds” is defined as the probability (p) that the 

event Y occurs (Y=1) over the probability (1-p) that 

the event Y does not occur (Y=0). “Odds” is (p/1-p). As 

shown in figure 4, “odds” is now a continuous number, 

ranging from 0 to infinity. But we still have a problem 

about the model assumption! Let’s look at the concept 

of “odds”. When we have 100 people walk by and 50 of 

them have the disease (Y occur) and 50 do not have 

the disease (Y not occur), the odds will be (50/100)/ 

(50/100) = 1. When we have 10 people walk by and 9 

of them have the disease and 1 do not have the 

disease, the odds will be (9/10)/(1/10) = 9. On the 

opposite scenario, When we have 10 people walk by 

and 1 of them have the disease and 9 do not have the 

disease, the odds will be (1/10) / (9/10) = 0.1111. 

 
Figure 4. Odd and Log (odds) 

Back to the regression model, as shown in equation (b) 

of figure 3, we now can substitute the values of Xs 

and the estimated β’s to calculate for outcome that is 

now continuous. But the assumption still does not 

hold regarding normally distributed of errors and 

non-linearity of the model. This is because our 

outcome (odds of Y) is still not normal due the fact 

that “odds’ is positive skewed, ranging from 0-1 for 

protective side (fewer subjects have the outcome Y) 

and 1-infinity for risk side (more subjects have the 

outcome). So equation (b) is not quite appropriate and 

does meet the basic assumptions. 

What can we do? Back to what we discussed before, 

when linearity fails to hold, even approximately, it 

may be possible to transform the variables in the 

regression model to improve the linearity. And if 

regression on the transformed scale appears to meet 

the assumptions of linear regression, then we may 

decide go with the transformations4-12. Again, when 

the data is positively skewed, logarithm is the 

common way that statisticians use to make the data 

normally distributed. Regression attempts to model 

the relationship between exploratory and outcome 

variables by fitting an equation to observed data. The 

“logarithm” concept is also about relationship 

between time and growth. The analogy is that in 

logarithm we ask “as time change, how much is the 

growth” and in regression “as an exploratory variable 

(X) changes, how much is the outcome (Y)”. As shown 

in figure 4, the “odds” after transformed into log scale, 

either common or natural log would become 

approximately normally distributed.  

The final equation (c) in figure 3 then appears to meet 

the assumptions. The expected outcome Y is now 

ln(odds), so-called “logit” term. Thus the logistic 

regression model is simply a non-linear 

transformation of the linear regression13-14. 
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So we can now tell that when exploratory variable (X) 

change for 1 unit, the ln(odds) of having the outcome 

Y would change about β (after controlled for or 

adjusted for other exploratory variables in the 

equation). Based on the example of variables in the 

logistic regression equation in figure 3, we can say 

that the ln(odds) or ln(p/1-p) of having HT between 

patients taking Drug A vs. Drug B is about β1; 

between male vs. female patients, about β2; and 

between those ages difference of 1 year, about β3. 

But how do we tell the patients - if they take Drug A, 

their ln(odds) to have HT is β1? No patients will 

understand that! To make it meaningful – let’s simply 

focus on effect of Drug on odds of getting HT as shown 

in figure 5. If you take Drug A (code 1), the equation 

will tell you that ln(odds of HT) = β0+β1; but If you 

take Drug B (code 0), the equation will tell you that 

ln(odds of HT) = β0. That means, ln(odds) of the two 

groups are different by β1. Solving the equation of 

subtraction of ln(odds) of the two groups, we get 

division in log scale (conversion rules between 

division and subtraction!). The odds of group 1 (Drug 

A) vs. odds of group 0 (Drug B) is called “odds ratio” 

(OR). This OR will tell us how much the two groups 

are different in terms of chance to get HT over chance 

of not getting HT.   

But still based on solving the equation (a)-(b) as 

shown in figure 5, we do not yet have OR, but have 

ln(OR) =β1. No patients will understand that ln(OR)! 

In most cases, when we report the result, we have to 

“back transform” the expected value (point estimates 

and its confidence intervals) from the model for better 

interpretability. The “back transform” is the inverse 

of the transformation to return to the original scale; 

that is, the antilogarithm. In case of this logistic 

regression model, the inversion of the equation, ln(OR) 

=β1, becomes OR = eβ1. Thus, after we estimate β1 by 

fitting the logistic regression model, we can then 

simply exponential it. And we now can explain to our 

patients how much the two groups are different in 

terms of their odds of having the outcome! 

 
Figure 5. Interpretation of logistic regression model  

Beyond “Log” 

Logarithm is used a lot more in different statistical 

techniques. Some make argument on the limitation of 

“logarithm” that it cannot handle negative numbers. 

But Euler had once said “To those who ask what the 

infinitely small quantity in mathematics is, we 

answer that it is actually zero. Hence there are not so 

many mysteries hidden in this concept as they are 

usually believed to be.” 

Since natural logarithm is used quite often to explain 

relationship of changes, I would like to end this “Let’s 

Log” with Euler's equation that is considered as the 

“beautiful equation”17 of all and proved to be true, ei - 

1 = 0. Interestingly, 1 and 0 are real numbers, e and  

are irrational numbers (values that can't be given 

precisely in decimal notation) and i is the "imaginary" 

number which is √ -1 (mathematically invented 

imaginary number as doubling -1 can never get -1). 

An imaginary number seems strange but getting real 

number from the power (inverse of logarithm) of an 

imaginary number and irrational numbers is even 

awesome (rockin!). 
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