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No. I am not asking you to go “Rock’n Roll’ with me at 

the “Let’s Rock: The Retro Festival” in UK. And I am 

not asking you to go cut down trees in the forest. But 

I would like you to reflect back to the “logarithm” 

function in mathematics and statistics that you 

learned in your high school days. Many people get 

blocked out and start to not like statistics or 

mathematics when they see numbers get converted 

into “logarithm”. Why do we have to do it in “log-

scale”? Why not just use or analyze data in simple 

numbering scale? There are reasons behind this. And 

it is as fun as going rock and roll at the concert!  

Back to basic - “Logarithm” is rockin! 

You may think mathematics is fixed and full of 

unchanging rules and truths. But it may not be so. As 

an example of the “logarithm” you will be surprised 

that modern mathematicians will give very different 

definitions from the mathematicians several 

centuries ago1. If we go back through the history of 

“logarithm”, we will see that the concept and methods 

had been evolved over time. Historically, the concept 

of logarithm was independently invented in the 17th 

century by at least two mathematicians, the Scottish 

John Napier (1550-1617) and the Swiss Joost Bürgi 

(1552-1632). In summary, logarithm was developed to 

speed up calculations, mainly to reduce the time 

required for multiplying numbers with many digits2. 

Napier was the first mathematician who named the 

term ”logarithm” from the Greek roots - “logos” 

meaning proportion + “arithmus” meaning number; 

this is because he used it to relate numbers to 

another value when he wanted to calculate complex 

formula for multiplication of very large numbers in 

astronomy. Almost at the same time period, Burgi 

came up with the concept of logarithm similar to 

Napier when he tried to make mathematical 

operations simpler by combining multiplication, 

division, square roots, and cube roots together in one 

table. Burgi did not get much credit as a founder of 

the logarithm because he did not share his work at 

that time while Napier published his findings3. 

By mathematical definition, “logarithm” is the 

exponent or power to which a base must be raised to 

yield a given number2. That is, x is the logarithm of n 

to the base b if bx = n; in which we can write: x = logbn. 

To make it clear, look at these two examples: 

23 = 8, so we can say that 3 is the logarithm of 8 to 

base 2; or 3 = log28 

102 = 100, so we can say that 2 is the logarithm of 

100 to base 10; or 2 = log10100 

Perhaps many of us are more familiar with the 

second example, “logarithm base 10” which is called 

“common” or “Briggsian” logarithm. Historically, 

Napier’s ideas were taken up and revised by the 

English mathematician Henry Briggs (1561-1630) 

who had invented the common logarithm table and 

made it accepted throughout Europe. Again, his 

innovation was used to solve the burden of 

mathematicians, astronomers, and other scientists in 

performing the long and tedious calculations2. The 

common table of logarithm base 10 concept is shown 

in figure 1. 

 
Figure 1. Common Logarithm, Log base 10 

The basic idea behind “logarithm” is that “addition 

and subtraction” are easier to perform than 

“multiplication and division” which Napier had said 

that the latter operation require a “tedious 

expenditure of time” and are subject to “slippery 

errors”2. As an example  of  the  law  of  exponent,  the  
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multiplication of numbers could be presented as the 

exponents additively: i.e., bxby = bx+y. Thus by 

correlating the geometric sequence of numbers b, b2, 

b3,… (b = base) and the arithmetic sequence 1, 2, 3,…, 

we don’t have to do series of “multiplication and 

division” but simply do “addition and subtraction”. 

For the sake of simple example, we will express in 

terms using common logarithm base 10 (we can do 

similar operations with logarithms of other bases); 

the calculation of long and tedious numbers like 

100000 x 1000000000 could be done by: 

 Exponent or power base 10: bxby = bx+y 

100000 x 1000000000 = 105 x 109 = 105+9 = 1014 = 

100000000000000  

• Logarithm base 10: logbmn = logbm + logbn 

log10(100000 x 1000000000) = log10(100000) + 

log10(1000000000) = 5+9 = 14,   

then convert back (so-called antilogarithm) = 1014 

= 100000000000000 

What is so natural about the “natural log”? 

Besides “common” logarithm or “log base 10”, when 

you look at different statistical procedures, you will 

see a lot of “natural” logarithm or “log base e”. Let’s 

go back a bit in time. Natural log was developed by 

Leonhard Euler (1707-1783) (pronounced "oiler") who 

was a mathematician of 18th century and is 

considered one of the greatest mathematicians of all 

time2. In fact, Euler studied with Johann Bernoulli 

(“Bernoulli” is another statistical term that you see a 

lot in statistics textbook – we may have another 

article on this later). Despite his blindness later in 

life, Euler had written nearly 900 books or produced 

on average one mathematical paper every week, 

covering almost all aspects of mathematics, from 

geometry to calculus to trigonometry to algebra to 

number theory, as well as optics, astronomy, 

cartography, mechanics, weights and measures and 

even the theory of music4. A lot of mathematical 

notation created or popularized by Euler included, for 

examples, e the base of the natural logarithm, f(x) the 

function f as applied to the variable or argument x, ∑ 

sigma, the sum of total of a set of numbers, etc.  

So what is “natural logarithm”? 

The “natural log” is usually written as logex or ln(x). 

Why do they use “ln” not “nl” for “natural log”? One of 

the explanations is given that it comes from the Latin 

name is “logarithmusnaturali”. And the natural log is 

the inverse of “e”. The “e” is sometimes called “Euler’s 

number” which Euler said that “e” is not his name but 

rather means “exponential”. As one of the easy way to 

define “natural log”, we can say that the natural log 

gives you the time needed to reach a certain level of 

growth5.   

ln(x)  =  amount of time needed to reach a certain 

level of continuous growth 

    = time needed to grow to x (with 100% 

continuous compounding) 

ex  =  amount of continuous growth after a certain 

amount of time 

     =  amount of growth after time x (with 100% 

continuous compounding) 

Again what is “e”? (“ln” is the inverse of “e”) 

One way to explain the “e” or the amount of growth is 

to think about the scenario of calculating interest 

growth of your deposited money (Figure 2). Suppose 

you open a bank account with $1 deposited and the 

interest rate of 100% per year growing continuously. 

 
Figure 2. Growth and time of interest 

As shown in figure 2(a), at the end of year 1, you will 

have $2; at year 2, you will have $4; at year 3, the 

money will increase to $8, and so on. The formula for 

increase could be written as [1+100%]x where x = 1 

time (1 year) to reach 100%.    

But if the interest rate of 100% is given at two times-

period over the year (thus 50% increase every half 

year), the money that you will get at the end of each 

year will be different. As shown in figure 2(b), you 

started at $1, but at the end of year 1, you will have 

$2.25, not $2. The formula for this increase is 

[1+100%/x]x where x = 2 times (in 1 year) to reach 

100%. 

Again, if the interest rate of 100% is given at four 

times-period over the year (thus 25% increase 

quarterly), you money that you will get at the end of 

each year will also be different. As shown in figure 

2(c), you started at $1, but at the end of year 1, you 

will have $2.441, not $2 or $2.25. The formula for this 

increase is [1+100%/x]x where x = 4 times (in 1 year) 

to reach 100%. 
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If this is the case - how much growth will you get 

after many x units of time per year to reach 100% 

continuous growth? It seems that – “the larger 

number of x, the larger number of gain.” (When x=1, 2, 

4, …, from initial $1 with 100% growth per year, you 

get $2, $2.25, $2.441.. at the end of the year, 

respectively!). If so, you should ask for x = 100 times 

per year to reach 100% growth rate so that at the end 

of the year you will get much higher than $2. The 

bank will not accept that for sure! But wait – the 

bank has no such worry. It has been proved that 

when x is getting higher to a certain limit, the gain 

will be somewhat stable as shown in figure 3. 

 
Figure 3. Natural logarithm, Log base e 

As you can see, when x keeps getting larger and 

larger, the growth is slowing down. Or 

mathematically said - as the number of compounding 

increases, the computed value appears to be 

approaching some fixed value - 

"2.718281828459045235360287……”. This number 

we're approaching is called "e". So “e” is defined as 

“the maximum continuous compounding of 100% 

growth at one time period”6. It is also called magic 

number, Euler’s number, or irrational constant. 

Irrational number means its value can't be given 

precisely in decimal notation. Like  in geometry, the 

ratio of the circumference of a circle to its diameter, 

its value is 22/7 or "3.141592653589……" which is 

another irrational number. So in any mathematical 

formula, we usually write this number as a letter-

name (e or ) because that was easier2. 

The number "e" is the "natural" exponential, because 

it arises naturally in math and physical sciences. We 

may think the numbering system of base 10 

(0..10..20..) that we are familiar is “natural” to us 

because almost all of us have 10 fingers. But we 

should say that the numbering base 10 is “common” 

to us; that is why logarithm base 10 is sometimes 

called “common log” as mentioned before. But in 

mathematical and scientific sense, there are several 

other bases that we also actually use but hardly 

realize it, for examples, base-60 in hours-minutes-

seconds, base-12 in feet-inches, or based-2 (0-1 or on-

off) or base-16 in computer science. Base 10 is good 

for counting in simple way, but it becomes more 

complicate when we monitor continuous growth like 

calculating interest rate in the banking example. The 

exponential functions are thus useful for modeling 

many systems that occur in our “natural” world6,7. It 

represents continuous growth in "real life" situations6. 

We will see that “e” is the “natural” base rate of 

growth of any systems or processes that grow 

continually and exponentially; for example, 

population, radioactive decay, interest, bacteria, and 

more. Even jagged systems that don’t grow smoothly 

can be approximated by “e”8. 

In brief, we can simply say that “e” and “ln” can tell 

us the relationship of growth and time5 such that: 

ex where x is “time”, we will get growth at that time 

ln(x) where x is “growth”, we will get time it would 

take to get that growth 

For example: 

e4   = 54.59815  

= After 4 units of time with 100% growth rate, we 

get the amount of growth increasing to 54.59815 

times of the original amount that we start with.  

(i.e., if we start with 1, it will increase to 

54.59815 at the end of 4 units of time) 

ln(54.59815) or le(54.59815) = 4 

= If we want growth of 54.59615 times from what 

we started with, at the growth rate of 100%, we 

have to wait for 4 units of time. 

However, the growth rate does not have to always be 

continually at 100%. It could be at any rate. The 

generic formula for exponential growth isert; as an 

example of growth rate at 150% and timing is 4 units 

of time, we will get: 

 

How “taking log” helps solve complex calculation 

Based on its development, the logarithm has become 

a magic tool for mathematicians, physicists, and 

engineers used for simplifying complex calculations 

as it would make the multiplication and division of 

large numbers into an easier form of looking up 

values in a table and then adding them for addition 

and subtracting them for division3. This notation can 

generally apply to different kinds of log – “common 

log”, “natural log” or log of other bases. The following 

explanation will use “natural log” or “ln” as examples. 
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Let’s start with basic properties of “log”.   

• ln(x) where x is “growth”, we will get time it 

would take to get that growth5. 

 
Figure 4. Basic properties of logarithm 

What is ln(1)?  

• ln(1) = 0 

• As we want to have growth of 1 but 1 is our 

starting point (we put in $1 the bank and wait to 

get $1 in the bank!) – we don’t have to wait, so 

time = 0. 

What is ln(3)?  

• ln(3) = 1.0986 

• As we want to have growth of 3 when 1 is our 

starting point (we put in $1 the bank and wait to 

get $3 in the bank) – we have to wait 1.0986 units 

of time. 

What is ln(1/3) or ln(0.33)?  

• ln(0.33) = -1.0986 

• Now we want to look at a fraction growth of 1/3 

when 1 is our current point or reference and our 

continuously growth is still 100%. As ln(3) means 

we will get the amount three times from the 

current amount. So ln(1/3) means we have to 

inverse it; and it is equal to -1.0986. That means - 

if we have time machine going backwards to the 

past1.0986 units of time we would have 1/3 ($0.33) 

of our current amount of 1 ($1) today.  

 As shown in figure 4, the value we get from ln(1/3) 

is equivalent to –ln(3).Thus, ln(1/x) = – ln(x)  

What is ln(-x)? 

• ln(-3) = impossible! 

• It is impossible that money or others (say, 

bacteria) will grow from 1 to -3 or any other 

negative amount. (Note that in real life we may 

have negative money printed in red in bank 

account because we overspent from what we have 

and the bank allows us to do so before claiming 

that we are bankrupt! But the truth is we cannot 

have “negative” amount of money! Thus, 

ln(negative number) = undefined. “Undefined” 

means that there is no amount of time we can 

wait to get a negative amount. 

• Using the same logic, the real logarithmic 

function ln(x) is defined only for x>0. We can't 

find a number x that would get ex = 0. As that x 

does not exist, then ln(0) is also undefined. 

Now, how logarithm turns “multiplication into 

addition” and “division into subtraction” (Figure 5). 

• ln(x) – where x is “growth”, we will get time it 

would take to get that growth5 

 
Figure 5. Operations of logarithms 

How long does it take to grow money from the current 

amount of $1 to $4?  

• ln(4) = 1.3862; so we have to wait 1.3862 unit of 

time. 

• But the growth from $1 to $4 can happen in a 

complex situation such that the growth was 

doubling the amount at 2 time points, from $1 

double to $2 and then from $2 double to $4. Thus, 

ln(4) = Time to double and double again; 

ln(4) = ln(2x2) = [ln(2)+ln(2)] = [0.6931+0.6931] = 

1.3862 

Same answer as simple ln(4)! 

How long does it take to grow money from the current 

amount of $1 to $6?  

• ln(6) = 1.7917; so we have to wait 1.7917 unit of 

time. 

• But, the growth from $1 to $6 can happen in a 

complex situation such that the growth was triple 

first and then double, from $1 triple to $3 and 

then from $3 double to $6. Thus, ln(6) = Time to 

triple and then double;  

ln(6)= ln(3 x 2) = [ln(3) + ln(2)] = [1.0986 + 0.6931] 

= 1.7917. 

How long does it take to grow money from the current 

amount of $1 to $2?  

• ln(2) = 0.6931 

• But the growth from $1 to $2 can happen in a 

situation that the growth increase four times first 
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and then get decrease 2 times downwards, from 

$1 triple to $4 and from $4 doubling downwards 

to $2. Thus, ln(2) = Time to 4-times increase and 

then 2-times decrease; 

ln(2) = ln (4/2) = [ln(4)-ln(2)] = [1.3862-0.6931] = 

0.6931 

• Or, the growth from $1 to $2 may occur in 

another different situation that the growth 

increase six times first and then get decrease 3 

times downwards, from $1 increase 6-times to $6 

and from $6 reduced down 3-times to $2. Thus, 

ln(2) = Time to 6-times increase and then 3-times 

decrease;  

ln(2) = ln(6/3) = [ln(6)-ln(3)] = [1.7917-1.0986] = 

0.6931 

The basic rules of logarithm turning “multiplication 

into addition” and “division into subtraction” are as 

follow: 

ln(a x b) = ln(a)+ln(b) 

ln (a/b) = ln(a)-ln(b) 

In the next issue, we will discuss how statisticians 

use ‘Log’ in managing and analyzing data. (To be 

continued) 
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